Fit LINEX models
linexModel(formula, data, response, x1, x2, x3, time, save.data = TRUE, correlation = NULL)
formula | a formula of the form |
---|---|
data | a data frame in which |
response | instead of specifying a formula, expressions for the components can be specified individually. |
x1 | instead of specifying a formula, expressions for the components can be specified individually. |
x2 | instead of specifying a formula, expressions for the components can be specified individually. |
x3 | instead of specifying a formula, expressions for the components can be specified individually. |
time | instead of specifying a formula, expressions for the components can be specified individually. |
correlation | an optional |
#> Generalized least squares fit by REML #> Model: log(iGDP) - log(iXp) ~ I(2 * (1 - 1/(iK/(0.5 * (iXp + iL))))) + I(iL/iXp - 1) #> Data: data #> Log-restricted-likelihood: 76.07256 #> #> Coefficients: #> (Intercept) I(2 * (1 - 1/(iK/(0.5 * (iXp + iL))))) #> -0.06059558 1.12151710 #> I(iL/iXp - 1) #> 2.12109354 #> #> Degrees of freedom: 51 total; 48 residual #> Residual standard error: 0.04765261linexModel(response = "iGDP", x1="iK", x2="iL", x3="iXp", time="iYear", data = EconUK)#> Generalized least squares fit by REML #> Model: log(iGDP) - log(iXp) ~ I(2 * (1 - 1/(iK/(0.5 * (iXp + iL))))) + I(iL/iXp - 1) #> Data: data #> Log-restricted-likelihood: 76.07256 #> #> Coefficients: #> (Intercept) I(2 * (1 - 1/(iK/(0.5 * (iXp + iL))))) #> -0.06059558 1.12151710 #> I(iL/iXp - 1) #> 2.12109354 #> #> Degrees of freedom: 51 total; 48 residual #> Residual standard error: 0.04765261#> logscale scale a_0 a_1 c_t #> 1 -0.06059558 0.9412038 1.121517 2.121094 1.891272